

Investigations of the *g* Factors of Fe^+ in MgO and CaO

Shao-Yi Wu^{a,b} and Hui-Ning Dong^{b,c}

^a Department of Applied Physics, University of Electronic Science & Technology of China,
Chengdu 610054, P. R. China

^b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016,
P. R. China

^c College of Electronic Engineering, Chongqing University of Posts and Telecommunications,
Chongqing 400065, P. R. China

Reprint requests to S.-Y. W.; E-mail: shaoyi-wu@163.com

Z. Naturforsch. **60a**, 366–368 (2005); received January 25, 2005

The *g* factors of Fe^+ in MgO and CaO are theoretically investigated by the perturbation formula of the *g* factor of a 3d^7 ion in cubic octahedral symmetry based on the cluster approach. By considering the partial quenching of the spin-orbit coupling interaction and the effective Landé factor due to the dynamic Jahn-Teller effect (DJTE), the experimental *g* factors of the studied systems are reasonably interpreted. It can be suggested that the small *g* factors of the Fe^+ centers in MgO and CaO can be likely attributed to the DJTE, rather than the covalency effect within the scheme of the static crystal-field model.

Key words: Electron Paramagnetic Resonance; Crystal- and Ligand-field Theory; Fe^+ ; MgO ; CaO .